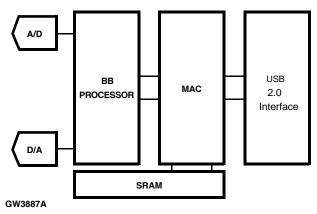


# Wireless LAN Integrated Medium Access Controller with Baseband Processor

The Conexant GW3887A Wireless LAN Integrated Media Access Controller with Baseband Processor is part of both the PRISM GT<sup>™</sup> single band and PRISM WWR<sup>™</sup> dual band radio chip sets. The GW3887A directly interfaces with Conexant's ISL3686B Single Band Direct Conversion Transceiver. Adding Conexant's ISL3084 5GHz VCO and ISL3980 Power Amp completes an end-to-end WLAN chip set solution compliant with 802.11b/g standards. Additionally, the GW3887A directly interfaces with Conexant's ISL3084 7A directly interfaces with Conexant's ISL3692 Dual Band Direct Conversion Transceiver. Adding Conexant's ISL3092 11GHz VCO and ISL3992 Dual Band Power Amp completes an end-to-end WLAN chip set solution compliant with 802.11a/b/g/h/i/j standards. The 802.11 protocol is implemented in firmware supporting custom WLAN solutions.


The GW3887A improvements over the GW3887 include the addition of an internal 48MHz oscillator, which eliminates several external components from the radio design.

Software implements the full IEEE 802.11 Wireless LAN MAC protocol. It supports BSS and IBSS operation under DCF, and operation under the optional Point Coordination Function (PCF). Active scanning is performed autonomously once initiated by host command. Host interface command and status handshakes allow concurrent operations from multi-threaded I/ O drivers.

Orthogonal Frequency Division Multiplexing (OFDM) of 52 sub-carriers modulated with BPSK, QPSK, 16QAM or 64QAM and a variety of convolutional coding rates provides 8 selectable data rates at 2.4GHz and 5GHz. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability along with Complementary Code Keying provide an additional 4 selectable data rates at 2.4GHz.

Built-in flexibility allows the GW3887A to be configured for a range of applications. The MAC is based on the ARM 946E processor core that offers a wide variety of code development support tools.

The GW3887A is housed in a thin plastic BGA package suitable for USB 2.0 Wireless LAN small form factor circuit card applications.



## Figure 1: Simplified Block Diagram

## Preliminary Data Sheet November 12, 2004

#### Features

- Firmware implements the full IEEE 802.11a/b/g/h/i/j Wireless LAN MAC protocols
- Internal WEP Engine allows 64 or 128 bit Encryption

CON

XANT

- AES Hardware Accelerator
- Start-up modes allow the USB vendor and device ID to be initialized from a small external serial EEPROM. This allows firmware to be downloaded from the host.
- On-chip SRAM memory
- A low frequency crystal oscillator can maintain time, which allows the high frequency clock source to be powered off during sleep mode.
- Firmware controlled antenna diversity
- Data Rates: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, & 54Mbps
- Modulation: OFDM with BPSK, QPSK, 16QAM, 64QAM; DBPSK; DQPSK and CCK
- Convolutional coding and interleaving on all OFDM rates
- Targeted for OFDM Multipath Delay Spreads >800ns for 6Mbps, and >100ns for 54Mbps
- Targeted for CCK Multipath Delay Spreads >90ns at 11Mbps, >200ns at 5.5Mbps and >360ns at 1 and 2Mbps
- Direct interface with the ISL3692 and ISL3686 Direct Conversion transceiver
- USB 2.0 Wireless LAN Adapters

### **1** Signal Descriptions

Table 1 provides detailed pin information.

| Pin Name   | BGA Ball<br>Assignment | Pad Type        | Pin I/O<br>TYPE | Description                                                          |
|------------|------------------------|-----------------|-----------------|----------------------------------------------------------------------|
| coreVDDD   | a1                     | supply          | none            | Digital core supply(1.8V)                                            |
| coreVDDD   | a10                    | supply          | none            | Digital core supply(1.8V)                                            |
| ioVDDD     | a11                    | supply          | none            | Digital IO supply (3.3V)                                             |
| GNDD       | a12                    | supply          | none            | Digital IO and core ground                                           |
| coreVDDD   | a13                    | supply          | none            | Digital core supply(1.8V)                                            |
| ioVDDD     | a14                    | supply          | none            | Digital IO supply (3.3V)                                             |
| TEST1      | a15                    | Bidir as output | none            | BBP testbus                                                          |
| TEST6      | a16                    | Bidir as output | none            | BBP testbus                                                          |
| SERCLK     | a2                     | Input           |                 | Serial Host Clock                                                    |
| SERDIN     | a3                     | BIDIR           |                 | Serial host data in for 4-wire interface. Bidir for 3 wire interface |
| coreVDDD   | a4                     | supply          | none            | Digital core supply(1.8V)                                            |
| ioVDDD     | a5                     | supply          | none            | Digital IO supply (3.3V)                                             |
| TDI        | a6                     | Bidir as input  | up              | JTAG test serial data input                                          |
| coreVDDD   | а7                     | supply          | none            | Digital core supply(1.8V)                                            |
| ioVDDD     | a8                     | supply          | none            | Digital IO supply (3.3V)                                             |
| TMSEL2     | a9                     | Bidir as input  | down            | Testmode select pin                                                  |
| GP2-13     | b1                     | bidir           | up              | General purpose                                                      |
| UTMI-2     | b10                    | Input           | none            | UTMI_LineState[1]                                                    |
| UTMI-1     | b11                    | Input           | none            | UTMI_LineState[0]                                                    |
| TEST4      | b12                    | Bidir as output | none            | BBP testbus                                                          |
| GNDD       | b13                    | supply          | none            | Digital IO and core ground                                           |
| TSTCLK44in | b14                    | Schmitt input   | down            | ATE 44MHz clock in                                                   |
| TSTCLK80in | b15                    | Schmitt input   | down            | ATE 80MHz clock in                                                   |
| coreVDDD   | b16                    | supply          | none            | Digital core supply(1.8V)                                            |
| ioVDDD     | b2                     | supply          | none            | Digital IO supply (3.3V)                                             |
| GNDD       | b3                     | supply          | none            | Digital IO and core ground                                           |
| UartSIN    | b4                     | Schmitt input   | down            | Uart serial data input                                               |
| GNDD       | b5                     | supply          | none            | Digital IO and core ground                                           |
| TMS        | b6                     | Bidir as input  | up              | JTAG test mode select                                                |
| TDO        | b7                     | bidir           | none            | JTAG test serial data output                                         |
| TMSEL1     | b8                     | Bidir as input  | down            | Testmode select pin                                                  |
| coreVDDD   | b9                     | supply          | none            | Digital core supply(1.8V)                                            |
| GP2-11     | c1                     | bidir           | up              | CSTSCHG                                                              |
| TEST10     | c10                    | Bidir as output | none            | BBP testbus                                                          |
| TEST9      | c11                    | Bidir as output | none            | BBP testbus                                                          |
| TEST3      | c12                    | Bidir as output | none            | BBP testbus                                                          |
| TEST2      | c13                    | Bidir as output | none            | BBP testbus                                                          |
| TEST0      | c14                    | Bidir as output | none            | BBP testbus (LSB)                                                    |
| loVDDD     | c15                    | supply          | none            | Digital IO supply (3.3V)                                             |
| CLKOUT     | c16                    | Bidir as output | none            | 40MHz clock out                                                      |
| UartSOUT   | c2                     | Bidir as output | none            | Uart output pad                                                      |
| SERCS_N    | c3                     | Input           | 1               | Serial Host Chip Select                                              |
| SERINT     | c4                     | Output          |                 | Serial Host Interrupt                                                |

#### Table 1: GW3887A Signal Descriptions (Sheet 2 of 5)

| Pin Name    | BGA Ball<br>Assignment | Pad Type        | Pin I/O<br>TYPE | Description                                                 |
|-------------|------------------------|-----------------|-----------------|-------------------------------------------------------------|
| RESETn      | c5                     | Schmitt input   | up              | Active low reset for chip                                   |
| GNDD        | c6                     | supply          | none            | Digital IO and core ground                                  |
| TMSEL3      | с7                     | Bidir as input  | down            | Testmode select pin                                         |
| TMSEL0      | c8                     | Bidir as input  | down            | Testmode select pin                                         |
| GNDD        | c9                     | supply          | none            | Digital IO and core ground                                  |
| loVDDD      | d1                     | supply          | none            | Digital IO supply (3.3V)                                    |
| TEST7       | d10                    | Bidir as output | none            | BBP testbus                                                 |
| TEST5       | d11                    | Bidir as output | none            | BBP testbus                                                 |
| coreVDDD    | d12                    | supply          | none            | Digital core supply(1.8V)                                   |
| UTMI-0      | d13                    | input           | none            | UTMI_CLK                                                    |
| OSCENABLE   | d14                    | Bidir as output | none            | Canned oscillator enable signal, high is active             |
| GNDD        | d15                    | supply          | none            | Digital IO and core ground                                  |
| coreVDDD    | d16                    | supply          | none            | Digital core supply(1.8V)                                   |
| GP2-12      | d2                     | bidir           | up              | Multi-ICE RTCK                                              |
| GP2-9       | d3                     | Bidir           | up              | LED1 Activity LED (and Uart BaudOut_N)                      |
| SERDOUT     | d4                     | Output          | none            | Serial host data out for 4-wire interface                   |
| UTMI-3      | d5                     | Output          | none            | UTMI_TxValid                                                |
| TRSTn       | d6                     | Bidir as input  | up              | JTAG test reset                                             |
| ТСК         | d7                     | Bidir as input  | up              | JTAG test clock                                             |
| TEST11      | d8                     | Bidir as output | none            | BBP testbus (MSB)                                           |
| TEST8       | d9                     | Bidir as output | none            | BBP testbus                                                 |
| coreVDDD    | e1                     | supply          | none            | Digital core supply(1.8V)                                   |
| GNDD        | e13                    | supply          | none            | Digital IO and core ground                                  |
| ioVDDD      | e14                    | supply          | none            | Digital IO supply (3.3V)                                    |
| LNA_H/L     | e15                    | Bidir as output | none            | AGC 30dB pad signal                                         |
| CLKIN40     | e16                    | Schmitt input   | none            | High frequency (40MHz) crystal pad cell                     |
| GP1-3       | e2                     | bidir           | down            | PA_PE5G 5GHz PA enable                                      |
| GP1-2       | e3                     | bidir           | down            | USB_VBUS                                                    |
| FAA_HRDn    | e4                     | Schmitt         | up              | Hardware input for FAA switch                               |
| ioVDDD      | f1                     | supply          | none            | Digital IO supply (3.3V)                                    |
| ANALOG_TEST | f13                    | Input/Output    | -               | Voltage used in conjuction with ATE testing                 |
| VSSA33C     | f14                    | supply          | -               | USB2.0 Common Analog ground                                 |
| VSSDPHY     | f15                    | supply          | none            | Gnd for Digital portion of USB Phy                          |
| VDDDPHY     | f16                    | supply          | none            | 1.8V supply for Digital portion of USB Phy                  |
| GP2-4       | f2                     | bidir           | down            | Uart DTR_N                                                  |
| GP2-7       | f3                     | bidir           | down            | Uart CTS_N                                                  |
| GP1-15      | f4                     | bidir           | up              | FAAmode_n                                                   |
| coreVDDD    | g1                     | supply          | none            | Digital core supply(1.8V)                                   |
| NC          | g13                    | none            | none            | No connect, no pad                                          |
| VDDA33C     | g14                    | supply          | -               | USB2.0 Common Analog supply                                 |
| XI          | g15                    | analog          | -               | 48-Mhz Crystal or clock input if external clock used        |
| ХО          | g16                    | analog          | -               | 48-Mhz Crystal output. Unused unless using external crystal |
| GP2-6       | g2                     | bidir           | down            | Uart RTS_N                                                  |
| GP2-8       | g3                     | bidir           | up              | Uart DCD_N                                                  |
| GNDD        | g4                     | supply          | none            | Digital IO and core ground                                  |
| GP2-2       | h1                     | bidir           | down            | FAA LED (LED2)                                              |

#### Table 1: GW3887A Signal Descriptions (Sheet 3 of 5)

| Pin Name   | BGA Ball<br>Assignment | Pad Type | Pin I/O<br>TYPE | Description                                                        |
|------------|------------------------|----------|-----------------|--------------------------------------------------------------------|
| NC         | h13                    | none     | none            | No connect, no pad                                                 |
| VSSA33T    | h14                    | supply   | -               | USB2.0 Transceiver ground                                          |
| REXT       | h15                    | Input    | -               | External resistor 3.01K ohm (1%)                                   |
| VDDA33T    | h16                    | supply   | -               | USB2.0 Transceiver Supply                                          |
| GP1-13     | h2                     | bidir    | up              | RADIO_PE                                                           |
| GNDD       | h3                     | supply   | none            | Digital IO and core ground                                         |
| GP2-5      | h4                     | bidir    | down            | Uart DSR_N                                                         |
| ioVDDD     | j1                     | supply   | none            | Digital IO supply (3.3V)                                           |
| VSSA33T    | j13                    | supply   | -               | USB2.0 Transceiver ground                                          |
| NC         | j14                    | none     | none            | No connect, no pad                                                 |
| VSSA33T    | j15                    | supply   | -               | USB2.0 Transceiver ground                                          |
| DM         | j16                    | analog   | -               | USB2.0 Data M Signal                                               |
| coreVDDD   | j2                     | supply   | none            | Digital core supply(1.8V)                                          |
| GP2-1      | j3                     | bidir    | float           | Serial flash data (SerDat)                                         |
| GP2-3      | j4                     | bidir    | down            | General purpose                                                    |
| GP1-14     | k1                     | bidir    | up              | ANTSEL                                                             |
| COMPpabias | k13                    | analog   | none            | Compensation cap for PA bias DAC                                   |
| PAbias5G   | k14                    | analog   | none            | PAbiasSel5G = 1 For bias control of the 5GHz PA using a 6bit DAC   |
| VDDA33T    | k15                    | supply   | -               | USB2.0 Transceiver Supply                                          |
| DP         | k16                    | analog   | -               | USB2.0 Data P Signal                                               |
| GP1-8      | k2                     | bidir    | down            | PE2                                                                |
| GNDD       | k3                     | supply   | none            | Digital IO and core ground                                         |
| GP2-0      | k4                     | bidir    | down            | Serial flash clock (SerCLK)                                        |
| GP1-11     | 11                     | bidir    | down            | ANTSEL                                                             |
| LOOP48     | 113                    | analog   | none            | Loop compensation network for 48Mhz output PLL                     |
| VDDA6      | 114                    | analog   | none            | Analog supply for PA bias DAC                                      |
| GNDA6      | 115                    | analog   | none            | Analog ground for PA bias                                          |
| NC         | 116                    | none     | none            | No connect, no pad                                                 |
| GP1-5      | 12                     | bidir    | down            | SYNTHCLK                                                           |
| GP2-10     | 13                     | bidir    | up              | Serial Flash Chip Select and RX/TX observe                         |
| GP1-12     | 14                     | bidir    | up              | TRSW                                                               |
| ioVDDD     | m1                     | supply   | none            | Digital IO supply (3.3V)                                           |
| GNDAPLL    | m13                    | analog   | none            | PLL ground                                                         |
| VDDAPLL    | m14                    | analog   | none            | PLL supply voltage                                                 |
| VDDAPLL    | m15                    | analog   | none            | PLL supply voltage                                                 |
| PAbias2G   | m16                    | analog   | none            | PAbiasSel5G = 0 For bias control of the 2.4GHz PA using a 6bit DAC |
| GP1-7      | m2                     | bidir    | down            | PA_PE2G 2.4Ghz PA enable.                                          |
| GP1-0      | m3                     | Bidir    | down            | PE1                                                                |
| GP1-9      | m4                     | bidir    | down            | PLL_LD (PLL lock detect)                                           |
| coreVDDD   | n1                     | supply   | none            | Digital core supply(1.8V)                                          |
| COMPiq     | n10                    | analog   | none            | Compensation cpa for Tx DACs                                       |
| RX_IF_det  | n11                    | analog   | none            | Overload detector input                                            |
| VDDA5      | n12                    | analog   | none            | Analog supply for RX and TX AGC DACs                               |
| COMPtx     | n13                    | analog   | none            | Compensation Cap for Tx AGC DAC                                    |
| VDDAPLL    | n14                    | analog   | none            | PLL supply voltage                                                 |
| LOOP80     | n15                    | analog   | none            | Loop compensation network for 80Mhz output PLL                     |

#### Table 1: GW3887A Signal Descriptions (Sheet 4 of 5)

| Pin Name   | BGA Ball<br>Assignment | Pad Type    | Pin I/O<br>TYPE | Description                                             |
|------------|------------------------|-------------|-----------------|---------------------------------------------------------|
| FSADpabias | n16                    | analog      | none            | Full scale adjust resistor for PA bias DAC              |
| GP1-6      | n2                     | Bidir       | down            | SYNTHDAT                                                |
| LFXTALOUT  | n3                     | Xtal output |                 | Low frequency (32kHz) crystal pad                       |
| LFXTALIN   | n4                     | Xtal input  |                 | Low frequency (32kHz) crystal pad                       |
| GNDD       | n5                     | supply      | none            | Digital IO and core ground                              |
| GNDA1      | n6                     | analog      | none            | Analog ground to 12bit DACs                             |
| FSADoff    | n7                     | analog      | none            | Full scale adjust resistor for 12bit DACS               |
| VDDA3      | n8                     | analog      | none            | Analog supply to ADCs                                   |
| GNDA3      | n9                     | analog      | none            | Analog ground to ADCs                                   |
| GNDD       | p1                     | supply      | none            | Digital IO and core ground                              |
| FSADiq     | p10                    | analog      | none            | Full scale adjust resistor for Tx DACs                  |
| GNDA4      | p11                    | analog      | none            | Analog ground for Tx DACs                               |
| RX_IFagc_N | p12                    | analog      | none            | lout- for BB Rx AGC DAC (BB_AGC-)                       |
| FSADtx     | p13                    | analog      | none            | Full scale adjust resistor for Tx AGC DAC               |
| VSUB2      | p14                    | analog      | none            | Substrate pad (ground)                                  |
| LOOP44     | p15                    | analog      | none            | Loop compensation network for 44MHz output PLL          |
| GNDAPLL    | p16                    | analog      | none            | PLL ground                                              |
| GP1-4      | p2                     | Bidir       | down            | SYNTH_LE                                                |
| GP1-10     | р3                     | Bidir       | down            | TRSW                                                    |
| VDDA1      | p4                     | analog      | none            | Analog supply to offset DACs (2.85V)                    |
| VDDD0      | p5                     | analog      | none            | Offset DACs digital supply (2.85V)                      |
| VDDA2      | p6                     | analog      | none            | Analog supply to offset DACs                            |
| VREF       | p7                     | analog      | none            | Band gap voltage reference input                        |
| Iref       | p8                     | analog      | none            | Current reference resistor                              |
| VDDA4      | p9                     | analog      | none            | Analog supply to Tx DACs                                |
| ioVDDD     | r1                     | supply      | none            | Digital IO supply (3.3V)                                |
| Qout_P     | r10                    | analog      | none            | lout+ for Q Tx DAC (TXQ+)                               |
| TX_IQ_det  | r11                    | analog      | none            | When CalModeEN=1 this is selected as input to TXDET ADC |
| COMPrx     | r12                    | analog      | none            | Compensation cap for Rx AGC DAC                         |
| GNDA5      | r13                    | analog      | none            | Analog ground for RX and TX AGC DAC                     |
| VDDD1      | r14                    | analog      | none            | Digital supply for DACs other than offset (2.85V)       |
| NC         | r15                    | none        | none            | No connect, no pad                                      |
| GNDAPLL    | r16                    | analog      | none            | PLL ground                                              |
| GP2-14     | r2                     | Bidir       | up              | LED0                                                    |
| coreVDDD   | r3                     | supply      | none            | Digital core supply(1.8V)                               |
| VSUB1      | r4                     | analog      | none            | Substrate tie (ground)                                  |
| NC         | r5                     | none        | none            | No connect, no pad                                      |
| COMPioff   | r6                     | analog      | none            | Comp pin for offset DACs                                |
| lin_N      | r7                     | analog      | none            | Input signal for I Rx ADC (RXI-)                        |
| Qin_P      | r8                     | analog      | none            | Input signal + for Q Rx ADC (RXQ+)                      |
| lout_P     | r9                     | analog      | none            | lout+ for I Tx DAC (TXI+)                               |
| GP1-1      | t1                     | Bidir       | down            | HB_LB (High band/ Low Band) high band when              |
| Qout_N     | t10                    | analog      | none            | lout- for Q Tx DAC (TXQ-)                               |
| PA_det     | t11                    | analog      | none            | When CalModeEN=0 this is select as input to TXDET ADC   |
| RX_IFagc_P | t12                    | analog      | none            | lout+ for BB Rx AGC DAC (BB_AGC+)                       |
| FSADrx     | t13                    | analog      | none            | Full scale adjust resistor for Rx AGC DAC               |

#### Table 1: GW3887A Signal Descriptions (Sheet 5 of 5)

| Pin Name | BGA Ball<br>Assignment | Pad Type | Pin I/O<br>TYPE | Description                               |
|----------|------------------------|----------|-----------------|-------------------------------------------|
| TX_IFagc | t14                    | analog   | none            | lout for Tx AGC DAC                       |
| GNDD1    | t15                    | analog   | none            | Digital ground for DACs other than offset |
| NC       | t16                    | none     | none            | No connect, no pad                        |
| GNDD0    | t2                     | analog   | none            | Offset DACs digital ground                |
| Qoout_P  | t3                     | analog   | none            | lout+ for Q offset DAC (QOFFSET+)         |
| Qoout_N  | t4                     | analog   | none            | lout- for Q offset DAC (QOFFSET-)         |
| loout_P  | t5                     | analog   | none            | lout+ for I offset DAC (IOFFSET+)         |
| loout_N  | t6                     | analog   | none            | lout- for I offset DAC (IOFFSET-)         |
| lin_P    | t7                     | analog   | none            | Input signal + for I Rx ADC (RXI+)        |
| Qin_N    | t8                     | analog   | none            | Input signal for Q Rx ADC (RXQ-)          |
| lout_N   | t9                     | analog   | none            | lout- for I Tx DAC (TXI-)                 |

#### 2 Thermal Information

Thermal resistance information is provided in Table 2.

#### Table 2: Thermal Resistance<sup>a</sup>

| Product     | θ <sub>JA</sub> (°C/W)                                                 |
|-------------|------------------------------------------------------------------------|
| BGA Package | 42                                                                     |
| 5           | in free air. Refer to DO-406099-TC<br>nal Characterization of Packaged |

Maximum Storage Temperature Range ...... -65°C to 150°C

Maximum Junction Temperature ..... 125°C



For recommended soldering conditions refer to DO-405727-TC Technical Brief (TB334) - Guidelines for Soldering Surface Mount Components to PC Boards.

### 3 Electrical Specifications

The GW3887A has an ESD classification of Class 1C. Electrical specifications for the GW3887A are provided in Table 3.

## WARNING:

Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

| Table 3: | Electrical Specifications <sup>a</sup> (Sheet 1 of 2) |
|----------|-------------------------------------------------------|
|----------|-------------------------------------------------------|

| Parameter                    | Symbol              | Test Conditions                                                             | Min                | Тур  | Max                   | Units |
|------------------------------|---------------------|-----------------------------------------------------------------------------|--------------------|------|-----------------------|-------|
| Absolute Maximum Ratings     |                     |                                                                             |                    |      |                       |       |
| Supply Voltage               | V <sub>cc</sub>     | -                                                                           |                    | 3.3  | 3.6                   | V     |
| Supply Voltage               | V <sub>cc</sub>     | -                                                                           |                    | 2.85 | 3.3                   | V     |
| Supply Voltage               | VDD_Core            | -                                                                           |                    | 1.8  | 1.98                  | V     |
| Input, Output or I/O Voltage |                     | -                                                                           | GND - 0.3          |      | V <sub>cc</sub> + 0.3 | V     |
| Operating Conditions         | ÷                   |                                                                             | •                  |      | •                     |       |
| Voltage                      | VDD_I/O             | -                                                                           | 3.0                | 3.3  | 3.6                   | V     |
| Voltage                      | VDDD                | -                                                                           | 2.7                | 2.85 | 3.3                   | V     |
| Voltage                      | VDDA_PLL            | -                                                                           | 2.7                | 2.85 | 3.3                   | V     |
| Voltage                      | VDDA                | -                                                                           | 2.7                | 2.85 | 3.3                   | V     |
| Voltage                      | VDD_Core            | -                                                                           | 1.62               | 1.8  | 1.98                  | V     |
| Ambient Temperature Range    | -                   | -                                                                           | -40                |      | 85                    | °C    |
| DC Electrical Specifications | ÷                   |                                                                             |                    |      |                       | ·     |
| Power Supply Current (3.3V)  | I <sub>CCOP</sub>   | V <sub>CC</sub> = 3.6V, CLK Frequency 80MHz                                 | -                  | -    | 10                    | mA    |
| Power Supply Current 2.85V)  | ICCAOP              | V = 3.3V, Rx                                                                | -                  | -    | 100                   | mA    |
| Power Supply Current (1.8V)  | I <sub>CORE</sub>   | V = 1.98V, Rx 54Mbps packet                                                 | -                  | -    | 300                   | mA    |
| Standby Current (3.3V)       | I <sub>CCstby</sub> | VCC = 3.3V, Using 32kHz LF XTAL,<br>T <sub>A</sub> = 25°C                   | -                  | -    | 300                   | μA    |
| Standby Current (2.85V)      | I <sub>CCstby</sub> | V = 2.85V, Using 32kHz LF XTAL, $T_A = 25^{\circ}C$                         | -                  | -    | 150                   | μΑ    |
| Standby (1.8V)               | I <sub>CCstby</sub> | V = 1.8V, Using 32kHz LF XTAL, $T_A = 25^{\circ}C$                          | -                  | -    | 100                   | μA    |
| Input Leakage Current        | I <sub>I</sub>      | $V_{CC}$ = Max, Input = 0V or $V_{CC}$                                      | -15                | 1    | 15                    | μA    |
| Output Leakage Current       | Io                  | $V_{CC}$ = Max, Input = 0V or $V_{CC}$                                      | -15                | 1    | 15                    | μΑ    |
| Logical One Input Voltage    | V <sub>IH</sub>     | V <sub>CC</sub> = Max, Min (V <sub>CC</sub> =VDD_I/O)                       | 0.7V <sub>CC</sub> | -    | -                     | V     |
| Logical Zero Input Voltage   | V <sub>IL</sub>     | V <sub>CC</sub> = Min, Max (V <sub>CC</sub> =VDD_I/O)                       | -                  | -    | 0.3V <sub>CC</sub>    | V     |
| Logical One Output Voltage   | V <sub>OH</sub>     | $I_{OH}$ = -1mA, $V_{CC}$ = Min ( $V_{CC}$ =VDD_I/O)                        | 0.9V <sub>CC</sub> | -    | -                     | V     |
| Logical Zero Output Voltage  | V <sub>OL</sub>     | $I_{OL} = 2mA, V_{CC} = Min (V_{CC} = VDD_l/O)$                             | -                  | 0.1  | 0.1V <sub>CC</sub>    | V     |
| Input Capacitance            | C <sub>IN</sub>     | CLK Frequency 1MHz. All measurements referenced to GND. $T_A = 25^{\circ}C$ | -                  | 5    | 10                    | pF    |
| Output Capacitance           | C <sub>OUT</sub>    | CLK Frequency 1MHz. All measurements referenced to GND. $T_A = 25^{\circ}C$ | -                  | 5    | 10                    | pF    |
| Schmitt Hysteresis           | -                   |                                                                             | 0.4                | -    | 0.6                   | V     |

#### Table 3: Electrical Specifications<sup>a</sup> (Sheet 2 of 2)

| Parameter                                                | Symbol                | Test Conditions | Min | Тур | Мах | Units |
|----------------------------------------------------------|-----------------------|-----------------|-----|-----|-----|-------|
| AC Electrical Specifications                             | •                     | •               |     |     | •   |       |
| CLOCK SIGNAL TIMING                                      |                       |                 |     |     |     |       |
| OSC Clock Frequency (40MHz ±20ppm max, duty cycle 45/55) | t <sub>CYC</sub>      |                 | -   | 40  | -   | MHz   |
| SYNTHESIZER                                              |                       | •               |     | •   | •   |       |
| SYNTHCLK(GP1-5) Width Hi                                 | t <sub>SCLKHI</sub>   |                 | 50  | -   | -   | ns    |
| SYNTHCLK(GP1-5) Width Hi                                 | t <sub>SCLKLO</sub>   |                 | 50  | -   | -   | ns    |
| Synthesizer Data Setup Time (SYNDATA, GP1-6)             | t <sub>SYNSETUP</sub> |                 | 50  | -   | -   | ns    |
| Synthesizer Data Hold Time                               | t <sub>SYNHOLD</sub>  |                 | 10  | -   | -   | ns    |
| LE pulse width (LE_IF, GP1-1 and LE_RF GP1-2)            | t <sub>LE</sub>       |                 | 50  | -   | -   | ns    |

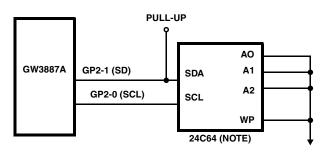
a. Controlled via design or process parameters and not directly tested.

#### 4 MAC Overview

The GW3887A MAC uses an ARM946E-S core. The MAC is capable of operating at frequencies from 32kHz in a reduced functionality power save mode up to 80MHz in normal operation.

The GW3887A is equipped with on chip memory, which is used for instruction memory and data buffers. No external SRAM is required.

The GW3887A is designed for use with a USB 2.0 host interface in accordance with the USB 2.0 specification. The GW3887A is designed for device side applications. The TMSEL[3:0] signals are used to select special test modes and are unterminated for standard applications.


The GW3887A is equipped with 31 general purpose I/Os. These GPIOs are divided into two groups, GP1[15:0] and GP2[14:0]. In general, the GP1 I/Os are used for radio control functions while the GP2 can be used for additional features under firmware control.

#### 5 Hardware WEP Engine

The Wired Equivalent Privacy Module (WEP) accelerates data encryption and decrypting providing a level of security for a wireless network that is intended to be at least as good as that of a wired network. The encryption protocol used is RSA RC4. For more information about the WEP RC4 encryption, see IEEE Std. 802.11 1994 section 8.2.

#### 6 Serial EEPROM Interface

The GW3887A allows the USB vendor ID and product ID information and a small firmware image to be transferred from an off-chip serial non-volatile memory device to on-chip RAM after a system reset. This allows a system vendor specific configuration. The operating frequency of the serial port is 400kHz with a voltage of 3.3V.



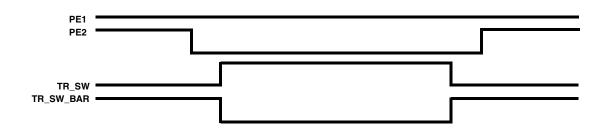
NOTE: Must operate at 400kHz at 3.3V<sub>DC</sub>.

#### Figure 2: Small Serial EEPROM Interface

#### 7 Reset

Power-on reset must be asserted via the RESET# pin to the GW3887A until  $10\mu$ s after establishing acceptable power supply levels and stable clock signals. The TMSEL[0.3] are sampled on the rising edge of RESET# to determine the boot mode. These pins have internal pull down resistors with an effective resistance of about 50K.

#### 8 Baseband Processor Interface


The interface to the baseband processor is mostly internal, but some of the connections are visible on the GP2 and test ports when properly configured.

### 9 Radio Power Sequencing

The GW3887A provides a number of firmware controlled pins that are used for controlling the power sequencing components in the radio.

Packet transmission requires precise control of the radio. Ideally, energy at the antenna ceases after the last symbol of information has been transmitted. Since the GW3887A is designed for use with both 5GHz and 2.4GHz radios, it provides signals capable of controlling multiple power amplifiers or one dual band amplifier. Additionally, the transmit/ receive switch must be controlled properly to protect the receiver. It's also important to apply appropriate modulation to the PA while it's active.

Signaling sequences for the beginning and end of normal transmissions are illustrated in Figure 3.



#### Figure 3: Transmit Control Signal Sequencing

A transmission begins with a transmit enable (TX\_ENABLE) to the Baseband processor inside the GW3887A. This enable activates the transmit state machine in the BBP. Next, 2GPABIAS activates the PA for 802.11b or g transmission followed by PE2 being activated. Alternately 5GPABIAS can activate the PA for 802.11a transmission. Lastly, the transmit/receive switch is configured for transmission via the differential pair TR\_SW and TR\_SW\_BAR. Delays for these signals related to the initiation of transmission are referenced to TX\_ENABLE.

After the GW3887A sends the last data, it de-asserts the appropriate PABIAS signal, PE2, and TR\_SW.

PE1 and PE2 encoding details are found in Table 4.

Note that during normal receive and transmit operation that PE1 is static and PE2 toggles for receive and transmit states.

|                   | PE1 | PE2 | PLL_PE |
|-------------------|-----|-----|--------|
| Power Down State  | 0   | 0   | 1      |
| Receive State     | 1   | 1   | 1      |
| Transmit State    | 1   | 0   | 1      |
| PLL Active State  | 0   | 1   | 1      |
| PLL Disable State | Х   | Х   | 0      |

Table 4: Power Enable States<sup>a</sup>

a. PLL\_PE is controlled via the serial interface, and can be used to disable the internal synthesizer, the actual synthesizer control is an AND function of PLL\_PE, and a result of the OR function of PE1 and PE2. PE1 and PE2 will directly control the power enable functionality of the LO buffer(s)/phase shifter.

#### 10 Master Clock and Low-Frequency Crystal

The GW3887A MAC controller accepts the same clock signal as the PHY baseband processor (40MHz), thereby avoiding the need for a separate, MAC-specific oscillator. The GW3887A also has a low-frequency oscillator. This low-frequency oscillator is intended for use with a 32kHz, tuning-fork type watch crystal to permit accurate timekeeping with very low power consumption during sleep state.

A very low power sleep mode allows the GW3887A device to be clocked from an external crystal source, in place of the CLK input. An output, OSCENABLE, is deasserted to allow the external oscillator that generates CLKIN to be disabled to save power. When the clocks have switched, all internal clocks are generated from the crystal source.

To transition out of deep sleep, the OSCENABLE output is asserted to re-enable the external oscillator. Some time later (typically 10ms), the oscillator outputs are stable and the GW3887A device is switched back to the high frequency CLK source.

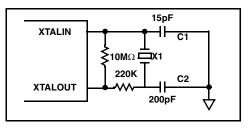
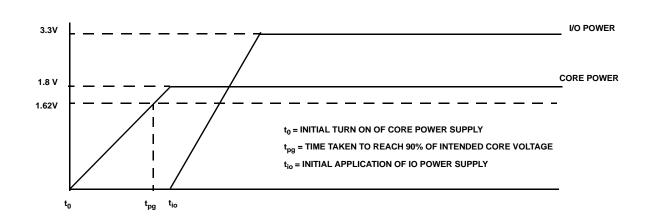
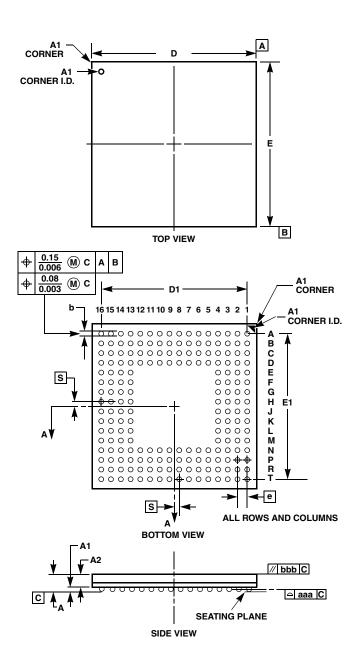



Figure 4: 32kHz Crystal


## 11 Power Up Sequencing

I/O structures may draw excessive current if the core voltage is not applied which, when prolonged and excessive, can reduce the usable life of the device. The safest way to power up the device is to sequence the core and I/O power. The core should be powered up prior to the I/O block. The I/O voltage should be applied after the core voltage has reached at least 90% of its regulated level. Bringing the core and I/O supplies to their respective regulation levels in a maximum time frame of 100ms moderates the stresses placed on both the power supply and the device. Sequencing is not required when powering down. However, all power must be removed within 100mS of the removal of any power supply.

From Figure 5, the sequence delay for turning on the I/O power supply  $(t_{io}-t_{pg})$  should be no less than 0ms and no greater than 100ms.


## 12 Proper Handling

All integrated circuits are susceptible to damage by inappropriate handling. Damage is often caused by Electrostatic Discharge (ESD) or inappropriate moisture content when soldering. The GW3887A has a moisture sensitivity classification of level 2 for GW3887AIK and GW3887AIK-T5 and level 3 for GW3887AIKZ-T5 in accordance with IPC/JEDEC J-STD-020A and should be handled accordingly.





#### 13 Outline Diagrams



## Figure 6: Plastic Ball Grid Array Packages (BGA)

| Table 5: | V192.14x14B 192 Ball Plastic Ball Grid |
|----------|----------------------------------------|
|          | Array Package                          |

| Symbol | Inches    |       | Millimeters |       | Notes |
|--------|-----------|-------|-------------|-------|-------|
|        | Min       | Max   | Min         | Max   | NOLES |
| А      | -         | 0.047 | -           | 1.20  | -     |
| A1     | 0.010     | 0.014 | 0.25        | 0.35  | -     |
| A2     | 0.026     | 0.035 | 0.67        | 0.90  | -     |
| b      | 0.014     | 0.018 | 0.35        | 0.45  | 7     |
| D/E    | 0.547     | 0.555 | 13.90       | 14.10 | -     |
| D1/E1  | 0.468     | 0.476 | 11.90       | 12.10 | -     |
| Ν      | 192       |       | 192         |       | -     |
| е      | 0.032 BSC |       | 0.80 BSC    |       | -     |
| MD/ME  | 16 x 16   |       | 16 x 16     |       | 3     |
| bbb    | 0.004     |       | 0.10        |       | -     |
| aaa    | 0.005     |       | 0.12        |       | -     |

NOTES for Figure 6 and Table 5:

- 1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
- 2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 3. "MD" and "ME" are the maximum ball matrix size for the "D" and "E" dimensions, respectively.
- 4. "N" is the maximum number of balls for the specific array size.
- 5. Primary datum C and seating plane are defined by the spherical crowns of the contact balls.
- 6. Dimension "A" includes standoff height "A1", package body thickness and lid or cap height "A2".
- 7. Dimension "b" is measured at the maximum ball diameter, parallel to the primary datum C.
- 8. Pin "A1" is marked on the top and bottom sides adjacent to A1.
- 9. "S" is measured with respect to datum's A and B and defines the position of the solder balls nearest to package centerlines. When there is an even number of balls in the outer row the value is "S" = e/2.

#### 14 Order Information

#### Table 6:Ordering Information

| Part<br>Number             | Package              | Package<br>Drawing # | Temp. Range<br>(°C) | Pack Method   | Minimum<br>Orderable<br>Quantities |
|----------------------------|----------------------|----------------------|---------------------|---------------|------------------------------------|
| GW3887AIK                  | 192 Pin BGA          |                      | -40 to 85           | Tray          | 90                                 |
| GW3887AIK-TK               | 192 Pin BGA          | V192.14x14B          |                     | Tape and Reel | 1000                               |
| GW3887AIKZ-TK <sup>a</sup> | Lead Free192 Pin BGA |                      |                     | Tape and Reel | 1000                               |

a. Lead Free products employ special lead free material sets; molding compounds / die attach materials and 100% lead free termination finishes, which are compatible with both SnPb and lead free soldering operations. Lead Free products are MSL classified at lead free peak reflow temperatures that meet or exceed the lead free requirements of IPC/JEDEC J Std-020B.

For additional information, contact Conexant Systems, Inc. (together with its subsidiaries, "Conexant") at **1-888-855-4562** (toll-free within the U.S. and Canada) or **1-732-345-7500**, or visit the Conexant internet site at www.conexant.com.

**IMPORTANT NOTICE:** Conexant has taken all commercially reasonable effort to ensure that the information contained in this document is accurate, however we realize that errors do occur. Conexant continually strives to improve the quality of its products and documentation and, as such, may make changes to this document at any time without notice. If you find errors, or information that may be missing, please contact your Conexant sales representative. Conexant advises all customers to ensure that they have the latest version of this data sheet and to verify, before placing orders, that information being relied on is current and complete. Conexant does not, however, assume any responsibility for the use of the information in this data sheet, nor for any infringements of patents or other rights of third parties which may result from its use. Readers of this document who are designers remain responsible for their own system designs and for ensuring that their overall system design satisfies their design objectives, taking due account of the specifications of all equipment and software which may be incorporated into their design. Please be reminded that differences in system hardware and software design or configuration may affect actual performance.

No licenses to patents, copyrights, trade secrets or other intellectual property of Conexant or any of its subsidiaries are granted by this document. Conexant assumes no liability whatsoever, and disclaims any express or implied warranty relating to the sale or license of the products described in this document, including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement. This Conexant proprietary document is intended only for use as specified in a non-disclosure agreement with the company or one of its subsidiaries.

This document is the property of Conexant. No part of this document may be copied, reproduced, stored in a retrieval system, translated, or transmitted in any form, or by any means, nor may any part of this document be used as the basis for manufacture or sale of any items or software without the express written consent of Conexant.

PRISM GT and WorldRadio are trademarks of Conexant. Third party brands, names, and marks are the property of their respective owners.

Copyright © 2003, 2004 GlobespanVirata, Inc., a wholly owned subsidiary of Conexant Systems, Inc.

ALL RIGHTS RESERVED



**Conexant Systems, Inc.** Proprietary - Use Pursuant to NDA DO-406971-DS Issue 2